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N-Acyl-2-benzoxazolinones in titanium-mediated aldol reactionsq
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Abstract—N-Acyl-2-benzoxazolinones readily form trichlorotitanium enolates that react rapidly with aldehydes to provide crys-
talline syn-aldol adducts in high yield. The resulting products are simply converted to amides, esters, and thioesters. A simple,
economical synthesis of 3-hydroxy-2-methylpentanoate N-propionylcysteamine thioesters based on these findings is presented.
� 2004 Elsevier Ltd. All rights reserved.
This paper describes the synthesis of key precursors used
for the chemo-biosynthesis of previously inaccessible
analogues of natural products,1 now possible through
genetic engineering of secondary metabolic pathways.2

The biosynthesis of novel 6-deoxyerythronolides and
erythromycins by feeding synthetic analogues of the
initial biosynthetic diketide unit, (2S,3R)-3-hydroxy-2-
methylpentanoate, to suitably engineered microorgan-
isms3 is a primary example (Fig. 1).

This technology has proven to be broadly applicable,
with an astonishing range of synthetic substrates being
converted into polyketides. We were faced with the
challenge of developing a simple, economical, and gen-
eral synthesis of syn-3-hydroxy-2-methylcarboxylate
(�diketide�) N-acylcysteamine thioesters to support this
technology. In developing this synthesis, we were not
qSupplementary data associated with this article can be found, in the
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required to prepare the diketide in optically active form,
taking advantage of the ability of the erythromycin
polyketide synthase to achieve a kinetic resolution of the
racemic diketide.4 We thus began a search for an eco-
nomical aldol reaction system that would support high
syn-diastereoselectivity, be suitable for use in multi-
kilogram scale reactions, and provide products that
could be directly and simply transformed into thioesters.
We report here the use of the trichlorotitanium enolate
of N-propionyl-2-benzoxazolinone, and demonstrate its
use in the preparation of the starting diketide unit in
erythromycin biosynthesis.

Titanium tetrachloride-mediated aldol reactions have
been shown to provide high levels of syn-diastereo-
selectivity.5 Excellent enantioselectivities can be
obtained through the use of chiral oxazolidinones,6a

oxazolidinthiones, and thiazolidinethiones in combina-
tion with ())sparteine.6b We had hoped that the tita-
nium enolate of the achiral N-propionyl oxazolidinone 1
would provide good syn-selectivities in the aldol reac-
tion. Interestingly, our initial attempts were unaccept-
able with respect to both yield and diastereoselectivity
(Scheme 1). Both of these parameters were improved
significantly with the addition of 2 equiv of ())sparteine
to the reaction mixture prior to addition of the alde-
hyde. Although this result was satisfying, the use of this
costly chiral reagent was unattractive for the large-scale
preparation of aldol adducts.

Based on these results we searched for an auxiliary and
reagent combination that would be economical and
would provide improved syn-selectivity. Although
we had no knowledge a priori as to the behavior of
N-acyloxazolones in Ti(IV)-mediated aldol processes,
these compounds had other properties that make them
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quite attractive for large-scale synthesis. They are
known to be suitable as acyl donors and can easily be
converted to the analogous amides, esters, and thio-
esters.7 In addition, the N-propionyl derivative of
2-benzoxazolinone is readily crystallized. We expected
that the high crystallinity of this compound would be
shared by the aldol products that descend from it.
Furthermore, it is simply prepared from salicylamide8

and is commercially available at low cost from a number
of sources.

Formation of the trichlorotitanium enolate of N-propi-
onyl benzoxazolinone 3 and subsequent reaction with
3-methylbutanal gave the syn-aldol adduct 4e, which is
crystalline as the racemate9 (Scheme 1). Investigation of
the scope of the reaction10 using an array of aldehydes
with triethylamine as the base (Table 1) revealed con-
sistently high yields and diastereoselectivities.11 Addi-
tionally, extremely base-sensitive aldehydes may be
converted into their syn-aldol adducts (entries 4h and 4i)
in good yield, suggesting a very mild enolate.

Reduced selectivity is seen with alkoxy aldehydes and
highly hindered systems such as pivalaldehyde. This is to
be expected since the stereochemical outcomes of these
aldol reactions are expected to be dependent upon
coordination of the aldehyde to titanium.12 The presence
of additional ligands, such as pendant ethers on the
aldehyde, or solvents, such as THF,13 which may per-
turb this coordination, are known to significantly alter
diastereoselectivity.14 The reaction with pivalaldehyde,
in fact, favored the anti-adduct, presumably due to steric
interference with the association of the aldehyde to the
Table 1. Aldol adducts (4) resulting from TiCl4-mediated condensa-

tion of N-propionyl-2-benzoxazolinone (3) with RCHO

Entry R1 Yield (%) syn:anti

4a CH2CH3 72 >95:5

4b CH@CH2 73 >95:5

4c Ph 88 >95:5

4d CH2OCH2Ph 60 90:10

4e CH2CH(CH3)2 88 >95:5

4f CH2CH2CH3 80 >95:5

4g CH(CH2)2 84 >95:5

4h CH2CH2Cl 63 >95:5

4i CH2CH2F 50 >95:5
titanium.15 It is of interest that this reversal of diaste-
reoselectivity was noted in the reaction of pivalaldehyde
in oxazaborolidinone-promoted aldols, where it was
ascribed to hydrogen-bonding interactions between the
aldehyde hydrogen and the oxazaborolidinone ring
oxygen.16 In the present case, there can be no such
H-bonding interactions at work.

Most importantly, the aldol procedure of Scheme 1 is
readily amenable to multi-mole scale processes,17 giving
good selectivity at 0 �C using inexpensive reagents. In
most cases, the workup procedure is particularly simple,
consisting of a quench with aqueous HCl followed by
filtration of the organic phase through a pad of silica gel
and crystallization of the product.

Simple models indicate that formation of the (Z)-enolate
of N-propionyl-2-benzoxazolinone (Fig. 2) should be
enforced by steric interactions between the enolate
methyl and H4 of the fused aromatic ring. Additionally,
aromatic stabilization of the bi-dentate enolate should
help to form a more ordered �chelated� transition state.
Strong preference for the (Z)-enolate is expected to
result in high syn-selectivity in the subsequent aldol
addition, as is the case for boron-mediated aldol addi-
tion reaction where enolate geometry and product ste-
reochemistry are strongly coupled.18

N-Acylbenzoxazolinones have been previously prepared
by treatment of carboxylic acids with phosphonate
reagents.19 An improved preparation of 3 was developed
based on our observation that acylation by acid anhy-
drides (but not acid chlorides) is catalytic in base. Thus,
treatment of an acetone or acetonitrile solution of
2-benzoxazolinone with propionic anhydride and
0.1Mequiv of potassium carbonate gives 3 in 98% yield
after simple precipitation from water.20

Displacement of 2-benzoxazolinone from the aldol
products occurs under extremely mild conditions and
with a wide variety of nucleophiles. Amines react readily
with the aldol adducts (4). Treatment of an ethereal
solution of 4f with 1.1 equiv of benzylamine resulted in
conversion to the corresponding benzylamide in 95%
NO
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yield. The corresponding methyl ester of 4f was formed
in 74% yield using catalytic dimethylaminopyridine in
methanol.

Application of the aldol adducts to the synthesis of
N-propionylcysteamine thioesters is equally direct. The
sodium salt of the N-acylcysteamine is prepared in situ
by reaction of the air-stable donor thioester (in this case,
an N,S-diacylcysteamine) with sodium methoxide in
methanol. The thiolate is then partially quenched by
addition of acetic acid, followed by addition of the aldol
products 4. This procedure avoids oxidative formation
of disulfides commonly observed with free thiols and
results in clean, efficient thiolate generation. The main
side reaction is in situ methanolysis of the thioester
product. We have found that quenching approximately
80% of the free thiolate prior to addition of the aldol
product significantly reduces methyl ester formation and
provides yields of 80–85% typically (Scheme 2).21

In summary, chlorotitanium enolates of N-propionyl-2-
benzoxazolinone react with a variety of aldehydes to
give crystalline aldol products of high yield and syn-
diastereoselectivity. Additionally, a simple procedure for
acylation and purification of the parent benzoxazalinone
has been developed. This coupled with extremely mild
thiolysis conditions provides an economical synthesis of
racemic syn-diketide thioesters that is practical from the
100-mg scale up to tens of kilograms. This process
should greatly facilitate the production of novel poly-
ketides through bioconversion using genetically manip-
ulated polyketide synthases.
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